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We propose a method for estimating the correlation dimension and correlation entropy of a time series. It is
based on a generalization of the correlation integral that is specifically useful when the time series is corrupted
with Gaussian measurement noise. From computational experiments we conclude that reasonable estimates for
the noise level, correlation dimension, and correlation entropy can be found for time series with up to 20%
noise. The method appears to be fairly robust with respect to the noise distribution.@S1063-651X~96!51405-4#

PACS number~s!: 05.45.1b, 02.50.2r

The characterization of nonlinear time series in the pres-
ence of measurement noise is a problem of great current
interest. For the ideal case of noise-free deterministic time
series, the reconstruction theorem@1,2# has led to a number
of powerful characterization methods. Measurement noise,
however, is known to put severe limitations on the estima-
tion of dynamical invariants from time series with these
methods.

The most commonly used characterization method of
noise-free time series is that of Grassberger and Procaccia
@3#. It allows the determination of both the correlation di-
mensionD and the correlation entropyK of an attractor after
constructing the m-dimensional delay vectors
xWn5(xn ,xn1t , . . . ,xn1(m21)t) with delayt from a time se-
ries $xn%n51

N . The correlation integralCm(r ) is defined in

terms of the distributionrm(xW ) of delay vectors as

Cm~r !5E dxWrm~xW !E dyWrm~yW !Q~r2uxW2yW u! ~1!

where Q( ) denotes the Heaviside function andu u a
norm. The correlation dimensionD and correlation entropy
K are defined asD5 limr→0limm→`dlogCm(r)/dlogr and
K5t21limr→0limm→`„$2 log@Cm(r)#%/m…. In practice, the
limits cannot be taken, and a log-log plot of the estimated
Cm(r ) versusr is usually made, in order to look for a range
in the lower r region where the curves are approximately
linear and parallel for consecutive values ofm. For small
values ofr , measurement noise gives rise to an increased
slope in the log-log plot of the correlation integral. For low
noise levels, a scaling region can usually still be found,
whereas this is impossible if the noise level is high.

Basically two approaches can be distinguished concerning
the analysis of time series with measurement noise. The first
is to separate the noise and the underlying time series with a
noise reduction method~for surveys see@4,5#!. The second is
based on characterizing the modified delay vector distribu-
tion. By calculating the effect of noise on the correlation
integral, Schoutenet al. @6# obtained a method for estimating
the correlation dimension in the case of bounded indepen-
dent, identically distributed~IID ! noise. Schreiber@7# has
proposed a method for estimating the noise level of a deter-
ministic time series contaminated with unbounded IID
Gaussian measurement noise. The effect of this noise on the

correlation integral has also been investigated by Smith@8#,
who used an approximation of the correlation integral to es-
timate D for small noise levels. The analytic difficulties
which prevent the estimation of invariants at higher noise
levels appear to be related to the contrast between the
smooth Gaussian noise distribution on the one hand and the
abrupt nature of the kernel functionQ( ) in the correlation
integral ~1! on the other.

In this Rapid Communication we will show that, in the
context of IID Gaussian noise, a more natural formalism is
obtained by examining a function from the same family as
the correlation integral, but which is tailored for Gaussian
measurement noise. We start by considering the correlation
integral as a member of a generalized class of kernel inte-
grals. Then a Gaussian kernel member is picked from this
class and its behavior is derived analytically in the presence
of Gaussian measurement noise. We then give some example
applications to noisy deterministic time series for whichD,
K and the noise level are estimated.

The correlation integral defined by~1! can be generalized
to

Tm~h!5E dxWrm~xW !E dyWrm~yW !w~ uxW2yW u/h! ~2!

wherew( ) is a kernel function. The correlation integral~1!
is retained when the kernel functionw(x) is taken to be
Q(12x). The parameterh will be referred to as the band-
width.

Using the Gaussian kernel function

w~x!5e2x2/4, ~3!

a version of the correlation integral,

Tm~h!5E dxWrm~xW !E dyWrm~yW !e2uxW2yW u2/~4h2!, ~4!

is obtained which will be referred to as the Gaussian kernel
correlation integral. Ghez and Vaienti@9,10# used a Gaussian
kernel function for the estimation of dimensions and entro-
pies of noise-free time series. Gaussian kernel functions are
also used in a statistical test for the reversibility of time
series@11# and for comparing the delay vector distributions
of two time series@12#.
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The following properties ofTm(h) will be used below. If
we takem fixed and consider a deterministic time series with
correlation dimensionD, then the scaling law

Tm~h!;hD for m fixed, h→0, ~5!

holds according to the results of Ghez and Vaienti@9#. More
generally, any kernelw(x) which decreases monotonically in
x for x>0 and for which limh→0h

2pw(x/h)50 pointwise
for x.0 and for anyp>0, implies the scaling law~5!.

Them dependence of~5! is found by expressingTm(h) as
Tm(h)5*drhm(r )w(r /h) wherehm(r )5dCm(r )/dr is the
distribution of the interpoint distancesr . It was shown by
Franket al. @13# that the correlation integral calculated with
the Euclidean norm behaves as

Cm~r !;e2Ktm~r /Am!D for r→0, m→`, ~6!

which implieshm(r );e2Ktmm2D/2 for fixed r . Them de-
pendence thus is described by the factore2Ktmm2D/2. We
therefore find

Tm~h!;e2Ktmm2D/2hD for h→0, m→`, ~7!

for Gaussian kernel correlation integrals in the noise-free
case with the Euclidean norm.

Following Frank et al., we could remove the factor
m2D/2 in ~7! by defining anm-dependent bandwidth. There
is, however, a practical reason for not using this freedom and
proceeding with~7!. Due to the finiteness of the attractor
there usually is an upper bandwidth up to which the behavior
~7! is observed, and it is approximately independent ofm.
By using dimension scaled bandwidths we would be forced
to go to smaller upper bandwidths for increasingm.

With the Euclidean norm, the Gaussian kernel correlation
integral can be written as

Tm~h!5~2hAp!mE dxW @rm
h ~xW !#2 ~8!

where

rm
h ~xW !5~hA2p!2mE dyWrm~yW !e2uxW2yW u2/~2h2!. ~9!

This is best demonstrated by deriving~4! from ~8! and ~9!.
After substituting~9! into ~8! we obtain

Tm~h!5~hAp!2m

3E dxWE dyWE dzWrm~yW !rm~zW !

3e2@ uxW2yW u21uxW2zWu2#/~2h2!. ~10!

Expanding the expression between square brackets in the ex-
ponent as( i51

m 2@xi2
1
2(yi1zi)]

211/2(yi2zi)
2, the integral

over xW is easily performed and results in~4!.
The distributionrm

h (xW ) given in ~9! allows an interpreta-

tion as a convolution of the delay vector distributionr(xW )
with a normalized Gaussian distribution with a standard de-
viation equal toh. This property may be exploited in the

presence of Gaussian measurement noise which itself acts as
a Gaussian convolution on the delay vector distribution.

To see how IID Gaussian measurement noise effects
Tm(h) it is useful to make a clear distinction between the
noisy delay vector distributionr(xW ) and its underlying noise-
free distributionr̄(xW ). The relation betweenr(xW ) and r̄(xW )
can be described by a convolution with a normalized Gauss-
ian distribution with standard deviations @14#. The distribu-
tion rm

h (xW ) in turn is obtained fromr(xW ) by a convolution
with a normalized Gaussian distribution with standard devia-
tion h as described by~9!. The two consecutive convolutions
can be summarized by the single convolution

rm
h ~xW !5~sA2p!2mE dyW r̄~yW !e2uxW2yW u2/~2s2!, ~11!

wheres5Ah21s2. Substituting~11! into ~8! and rewriting
this in the form of~4!, we obtain

Tm~h!5S h2

h21s2Dm/2
3E dxW r̄m~xW !E dyW r̄m~yW !e2uxW2yW u2/~4h214s2!.

~12!

Equation ~12! describesTm(h) in terms of the underlying
distribution r̄(xW ) in the presence of IID Gaussian noise with
standard deviations.

The behavior of the double integral in~12! is found from
the definition ofTm(h) given in ~4! together with the noise-
free scaling law~7!, leading to

Tm~h!.fS h2

h21s2Dm/2e2Ktmm2D/2Ah21s2 D

for Ah21s2→0, m→`, ~13!

wheref is a normalization constant.
In practice the standard deviations of the noise level is

fixed at a nonzero value. We are thus not able to let
Ah21s2 go to zero. Nevertheless, we expect relation~13! to
hold good in a range of small values ofh if the noise level
s is not too large. Note that the Gaussian kernel correlation
integral for small values ofh and m fixed behaves as
Tm(h);hm, which is a manifestation of the
m-dimensionality of the set of noisy delay vectors. Taking
the limit s→0 on the other hand, gives back the scaling
relation ~7! of the noise-free case.

Before we describe the application of our method to time
series, we want to make a remark about our normalization
conventions. All time series are rescaled to have a standard
deviation of 1 and the quoted noise levels denote the noise
levels after rescaling. This allows for a convenient compari-
son of the bandwidth parameterh and the noise levelss for
the different time series to be considered. The cases50
corresponds with a clean noise-free time series whereas a
noise level ofs51 implies a time series consisting of pure
IID samples.
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The Gaussian kernel correlation integralsTm(h) can be
consistently estimated by replacing the integrals over the de-
lay vector distributions in~4! with an average over delay
vectors which are assumed to be independently distributed
according torm(xW ). The estimateT̂m(h) becomes

T̂m~h!5
1

Np
(
i

(
jÞ i

c i j ~h! ~14!

whereNp is the number of (i , j ) pairs used and

c i j ~h!5e2uxW i2xW j u
2/~4h2!. ~15!

In Fig. 1~a!, the estimateT̂m(h) is drawn as a function of
the bandwidthh on a log-log scale for a noise-free time
series generated with the He´non model, of lengthN54000.
The curves are obtained by choosing at random 1000 refer-
ence indicesi and using all values ofj for which jÞ i . The
bandwidth parameters were chosen equidistant on a logarith-
mic scale with 2 values per binade. This choice has the ad-
vantage that it is sufficient to perform the numerically time-
consuming evaluation of the exponential function inwi j (h)
only for the largest value of the bandwidth parameter. The
value ofwi j (h) at the smaller bandwidths can then be found
efficiently using the relationwi j (h/A2)5wi j

2 (h).
The scaling relation~7! for low-dimensional deterministic

time series implies parallel linear curves for small values of
h and large values ofm. In Fig. 1~a! this behavior can be
observed for a large range ofh values form>2. Figure 1~b!
shows a log-log plot ofT̂m(h) versush for the same He´non
time series with IID Gaussian noise with a standard deviation
of s50.05. It can be observed in Fig. 1~b! that the noise
gives rise to an increased slope for small bandwidth values
h.

For different values of the noise level, a Marquardt non-
linear fit procedure@15# for the parametersf, K, D, and
s was performed in the range whereh<0.25, and
T̂m(h).2/Np . For eachm, the valuesT̂m(h) and T̂m11(h)
were fitted simultaneously to the model function~13!. The
standard deviations of the estimatesT̂m(h) were taken as
weights in the fit procedure. Assuming independence of the
distances, the varianceV of T̂m(h) is estimated as

V @ T̂m~h!#5
1

Np
@c̄ i j

2 ~h!2c̄ i j ~h!2# ~16!

where the bars denote averaging over the pairs (i , j ).
The estimates of the model parameters at a noise level of

s50.05 as a function ofm are shown in Fig. 2. Reasonable
values ofŝ, D̂, andK̂ ~the estimates ofs, D, andK respec-
tively! are obtained at moderately small values ofm (m53
or m54).

The results for different noise levels ranging up to
s50.20 are summarized in Table I. All values were esti-
mated atm54. The estimates ofs are close to their true
values and for noise levels up to 0.10, the values ofD̂ and
K̂ are close to the values found in the literature (D'1.22,
see@3# andK'0.29, see@13#!. The estimated values of the
standard error, however, seem to be on the small side. This is
possibly due to cross-correlations between the estimates of
the Gaussian kernel correlation functions for different values
of h andm.

We applied the method to a noise-free time series
(N510 000, sample time 0.5,s50.00! generated with the
Rössler model~see Ref.@16#!. The estimated parameters at
m59 for t53 were ŝ50.000760.0002, D̂51.9760.01
andK̂50.06660.009. Application of the method to a noisy

FIG. 1. The estimateT̂m(h) as a function of the bandwidthh on
a log-log scale for a He´non time series without noise~a! and with a
~normalized! noise level of 0.05~b!. The different lines correspond
to the casesm51 ~upper line! up tom510 ~lower line!. The bars
denote the estimated standard error.

FIG. 2. Estimated valuesŝ, D̂ and K̂ as a function ofm for a
Hénon time series with a noise levels of 0.05. The bars denote the
estimated 95% confidence interval (2 standard errors!.

TABLE I. Estimated valuesŝ, D̂ andK̂, 6 the estimated stan-
dard errors for He´non time series contaminated with different noise
levelss. All values are estimated atm54.

s ŝ D̂ K̂

0.00 0.0000460.00009 1.19660.002 0.29660.003
0.01 0.010260.00006 1.20560.002 0.29360.002
0.02 0.019560.0002 1.20060.004 0.29460.003
0.05 0.048760.0003 1.24060.007 0.28060.003
0.10 0.099660.0008 1.2660.02 0.30960.003
0.20 0.20660.003 1.1660.05 0.27860.003
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Rössler time series (N510 000, sample time 0.5,s50.05)
gave the estimatesŝ50.050760.0003, D̂51.9460.03 and
K̂50.06160.001. An upper limit for the value ofD is the
information dimension which was estimated by Grassberger
et al. @16# as 2.0060.01. Using the method of Schouten
et al. @17#, we have found a correlation entropy of 0.07 for
the Rössler time series. These examples show that our
method can also be applied to time series obtained from
continuous time dynamical systems.

The sensitivity of our method with respect to the type
of measurement noise, was tested on a He´non time
series with independent uniformly distributed noise with a
standard deviations of 0.05. The estimated parameters
are ŝ50.045460.0003, D̂51.22060.007 and K̂50.294
60.003. Although the estimated noise level is about 10% too
small, the estimates ofD and K are still very reasonable.
This suggests that the method can be of use for different
noise distributions.

In this Rapid Communication, we have introduced the
Gaussian kernel correlation integralTm(h) which is tailored
for the characterization of delay vector distributions in the
presence of Gaussian measurement noise. For small noise
levels s, the behavior of the Gaussian kernel correlation
integral is derived analytically in terms of the noise levels
and the invariantsD andK. This allows the estimation of the
noise level of a time series simultaneously with these invari-

ants using a Marquardt type estimation method. The first
results obtained with maps and continuous time dynamical
systems are in good agreement with the noise-free values.
The standard errors of the parameters appear to be somewhat
underestimated, possibly due to the neglected cross-
correlations among the estimates of the Gaussian kernel cor-
relation integrals at different values ofh andm. The method
works well up to noise levelss of about 0.20. Although a
trial with uniformly distributed noise suggests that the
method is fairly robust against the type of measurement
noise, we expect an improvement with the use of linear com-
binations of several coordinates like in embeddings based on
singular value decompositions. Also the IID requirement
may be relaxed when a delayt of the order of the autocor-
relation time of the noise is used.

In practice an appropriate choice of the upper bandwidth
has to be made. Alsoa priori it is not known whether an
experimental time series consists of a low-dimensional com-
ponent corrupted with measurement noise. In order to pre-
vent spurious estimates, the quality of the fit below the upper
bandwidth chosen should be investigated. Furthermore, the
stability of the estimated parameters upon changing the em-
bedding parameterst andm should be assessed.

The author wishes to thank Professor F. Takens and Dr.
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